recruit-jp/japanese-clip-vit-b-32-roberta-baseを動かす

初めに

日本語に対応しているCLIPモデルが新しく出てきたので、試してみます

blog.recruit.co.jp

環境

  • L4 GPU
  • ubuntu22.04

準備

ライブラリを入れていきます

!pip install pillow requests transformers torch torchvision sentencepiece

実行

モデルのロード

import io
import requests

import torch
import torchvision
from PIL import Image
from transformers import AutoTokenizer, AutoModel


model_name = "recruit-jp/japanese-clip-vit-b-32-roberta-base"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name, trust_remote_code=True).to(device)


def _convert_to_rgb(image):
    return image.convert('RGB')


preprocess = torchvision.transforms.Compose([
    torchvision.transforms.Resize(size=224, interpolation=torchvision.transforms.InterpolationMode.BICUBIC, max_size=None),
    torchvision.transforms.CenterCrop(size=(224, 224)),
    _convert_to_rgb,
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])
])


def tokenize(tokenizer, texts):
    texts = ["[CLS]" + text for text in texts]
    encodings = [
        # NOTE: the maximum token length that can be fed into this model is 77
        tokenizer(text, max_length=77, padding="max_length", truncation=True, add_special_tokens=False)["input_ids"]
        for text in texts
    ]
    return torch.LongTensor(encodings)

サンプル画像のCLIPテスト

サンプルにある以下の画像でテストしてみます

# Run!
image = Image.open(
    io.BytesIO(
        requests.get(
            'https://images.pexels.com/photos/2253275/pexels-photo-2253275.jpeg?auto=compress&cs=tinysrgb&dpr=3&h=750&w=1260'
        ).content
    )
)
image = preprocess(image).unsqueeze(0).to(device)
text = tokenize(tokenizer, texts=["犬", "猫", "象"]).to(device)
with torch.inference_mode():
    image_features = model.get_image_features(image)
    image_features /= image_features.norm(dim=-1, keepdim=True)
    text_features = model.get_text_features(input_ids=text)
    text_features /= text_features.norm(dim=-1, keepdim=True)
    probs = image_features @ text_features.T
print("Label probs:", probs.cpu().numpy()[0])

結果は以下のようになり、犬のラベル結果が数値が高くなっていました

Label probs: [0.49223694 0.23412797 0.25611094]

つくよみちゃん画像のCLIPテスト

以下のつくよみちゃんの画像でテストしてみます

Illustration by えみゃコーラ

# Run!
image = Image.open(
    io.BytesIO(
        requests.get(
            'https://tyc.rei-yumesaki.net/wp-content/uploads/emya-furisode.png'
        ).content
    )
)
image = preprocess(image).unsqueeze(0).to(device)
text = tokenize(tokenizer, texts=["女の子", "男の子", "猫"]).to(device)
with torch.inference_mode():
    image_features = model.get_image_features(image)
    image_features /= image_features.norm(dim=-1, keepdim=True)
    text_features = model.get_text_features(input_ids=text)
    text_features /= text_features.norm(dim=-1, keepdim=True)
    probs = image_features @ text_features.T
print("Label probs:", probs.cpu().numpy()[0])

結果は以下のようになりました

Label probs: [0.41579735 0.25743386 0.2505836 ]

雰囲気のテスト

同じくつくよみちゃんの画像で雰囲気のテストをしてみます

# Run!
image = Image.open(
    io.BytesIO(
        requests.get(
            'https://tyc.rei-yumesaki.net/wp-content/uploads/emya-furisode.png'
        ).content
    )
)
image = preprocess(image).unsqueeze(0).to(device)
text = tokenize(tokenizer, texts=["かわいい", "かっこいい"]).to(device)
with torch.inference_mode():
    image_features = model.get_image_features(image)
    image_features /= image_features.norm(dim=-1, keepdim=True)
    text_features = model.get_text_features(input_ids=text)
    text_features /= text_features.norm(dim=-1, keepdim=True)
    probs = image_features @ text_features.T
print("Label probs:", probs.cpu().numpy()[0])

結果は以下のようでした

Label probs: [0.44720185 0.32953736]